A numerical study of the additive Schwarz preconditioned exact Newton method (ASPEN) as a nonlinear preconditioner for immiscible and compositional porous media flow

نویسندگان

چکیده

Abstract Domain decomposition methods are widely used as preconditioners for Krylov subspace linear solvers. In the simulation of porous media flow there has recently been a growing interest in nonlinear preconditioning Newton’s method. this work, we perform numerical study spatial additive Schwarz preconditioned exact Newton (ASPEN) method preconditioner applied to both fully implicit or sequential schemes simulating immiscible and compositional multiphase flow. We first review ASPEN discuss how resulting linearized global equations can be recast so that one use standard developed underlying model equations. observe local updates efficiently handle nonlinearities, whereas long-range interactions resolved by update. The combination two leads very competitive algorithm. illustrate behavior algorithm conceptual two-dimensional cases, well realistic three dimensional models. A complexity analysis demonstrates with scheme is robust scalable alternative well-established schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Convergence of the Additive Schwarz Preconditioned Inexact Newton Method

The additive Schwarz preconditioned inexact Newton (ASPIN) method was recently introduced [X.-C. Cai and D. E. Keyes, SIAM J. Sci. Comput., 24 (2002), pp. 183–200] to solve the systems of nonlinear equations with nonbalanced nonlinearities. Although the ASPIN method has successfully been used to solve some difficult nonlinear equations, its convergence property has not been studied since it was...

متن کامل

A Parallel Nonlinear Additive Schwarz Preconditioned Inexact Newton Algorithm for Incompressible Navier-Stokes Equations ?

A nonlinear additive Schwarz preconditioned inexact Newton method (ASPIN) was introduced recently for solving large sparse highly nonlinear system of equations obtained from the discretization of nonlinear partial differential equations. In this paper, we discuss some extensions of ASPIN for solving the steady-state incompressible Navier-Stokes equations with high Reynolds numbers in the veloci...

متن کامل

the study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media

امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...

Mathematical Description of the Implementation of the Adaptive Newton-Raphson Method in Compositional Porous Media Flow

Models for multiphase-multicomponent flow in porous media are described in systems of PDEs. Solving them using finite difference discretization method can be of three ways; explicit, semi-implicit, and fully implicit. In this study, we present the implementation of an adaptive Newton-Raphson method in the context of IMPECS (Implicit Pressures Explicit Concentrations and Saturations) method of s...

متن کامل

wuthering heights and the concept of marality/a sociological study of the novel

to discuss my point, i have collected quite a number of articles, anthologies, and books about "wuthering heights" applying various ideas and theories to this fantastic story. hence, i have come to believe that gadamer and jauss are rightful when they claim that "the individaul human mind is the center and origin of all meaning," 3 that reading literature is a reader-oriented activity, that it ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Geosciences

سال: 2021

ISSN: ['1573-1499', '1420-0597']

DOI: https://doi.org/10.1007/s10596-021-10090-x